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Abstract Quantum-inspired evolutionary algorithms
(QIEAs) combine the advantages of quantum-inspired bit
(Q-bit), representation and operators with evolutionary
algorithms for better performance. Using quantum-inspired
representation the complete binary search space can be gen-
erated by collapsing a single Q-bit string repeatedly. Thus,
even a population size of 1 can be taken in aQIEA implemen-
tation resulting in enormous saving in computation.Although
this is correct in theory, QIEA implementations run into trou-
ble in exploring large search spaces with this approach. The
Q-bit string has to be initialized to produce each possible
binary string with equal probability and then altered slowly
to probabilistically favor generation of strings with better
fitness values. This process is unacceptably slow when the
search spaces are very large. Many ideas have been reported
with EAs/QIEAs for speeding up convergence while ensur-
ing that the algorithm does not get stuck in local optima. In
this paper, the possible features are identified and systemati-
cally introduced and tested in theQIEA framework in various
combinations. Some of these features increase the random-
ness in the search process for better exploration and the others
compensate by local search for better exploitation together
enabling a judicious combination tailored for particular prob-
lem being solved. This is referred to as “right-sizing the
randomness” in theQIEAsearch.Benchmark instances of the
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well-known and well-studied Quadratic Knapsack Problem
are used to demonstrate how effective these features are—
individually and collectively. The new framework, dubbed
QIEA-QKP, is shown to be much more effective than canon-
icalQIEA. The framework can be utilizedwith profit on other
problems and is being attempted.
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1 Introduction

Evolutionary algorithm (EA) is a population-based nature-
inspired meta-heuristic search technique (Bäck 1996).
Quantum-inspired evolutionary algorithms (QIEAs) pro-
posedbyHan andKim (2002, 2004), combine the advantages
of quantum-inspired bit (Q-bit) representation and operators
with EAs for better performance. QIEAs have been shown to
be competitive for several search and optimization problems.
Several attempts that utilize QIEAs for the solution of a wide
variety of problems have been reported in literature.

The main strengths of the QIEAs are as follows:

(i) QIEAshavebetter representationpower usingquantum-
inspired bits (Q-bits) to enable use of smaller popu-
lations (ideally even a size of 1). Smaller populations
require lesser computation during search.

(ii) QIEAs have an Estimation of Distribution Algorithm
(EDA) style functioning with implicit determination of
distributions leading to better solutions (Platel et al.
2009; Zhang 2011).

(iii) QIEAs provide an extremely flexible framework that
can be adapted for the solution of both real—parameter
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functionoptimizationproblems aswell as combinatorial
optimization problems. This makes them very versatile
in their applicability.

(iv) TheQIEA framework also provides flexibility for inclu-
sion of features appropriate for a given problem towards
delivering better search performance (Zhang 2011).

(v) QIEAs inherently favor exploration of the search space
initially, while gradually shifting towards exploitation
as the search progresses, which is a desirable aspect.

(vi) There is a possibility of utilizing one of several termi-
nation criteria appropriate for the problem at hand (Han
and Kim 2004).

QIEAs are attractive because of the advantages listed above.
This has spurred greater recent interest in the QIEAs. The
fundamental basis of their working is well understood.
QIEAs, of course, are not a “one-size fits all” solution. The
No Free lunch Theorem prohibits that. The conspicuous lim-
itations of QIEAs are as follows. Many of these are shared
with other EAs as well.

(i) Slow convergence may result from use of small Q-bit
rotations. This is because initial configurations of Q-bits
result in random sampling and search.

(ii) Use of large Q-bit rotations may cause the algorithm to
miss a good solution completely.

(iii) Inclusion of features promoting faster convergence may
cause the algorithm to get stuck in local optima.

(iv) Slow convergence may limit the problem sizes that can
be tackled using QIEAs.

(v) Implementation of QIEAs, just as other EAs, is more
an art to enable balance of computational effort devoted
to exploration and exploitation that is required for good
search performance on the given problem.

QIEAs only provide a very broad framework. Any attempted
implementation, therefore, must make judicious use of the
framework and include features suited to the particular prob-
lem at hand in order to get the desired performance. The
objective in any attempted implementation of QIEA is to
balance exploration and exploitation thus achieving conver-
gence to optimal or near optimal solution without requiring
prohibitively large computation. This is possible by “right-
sizing the randomness” in the QIEA search. This has led to
a plethora of attempts reported in the literature that report an
“Improved QIEA” for the solution of a particular problem as
shown in Table 1 for various knapsack problems. Some of
the modifications typically proposed are as follows:

(i) Utilizing a good solution obtained using some heuristic
to guide the search.

(ii) Hybridizing the QIEA with some kind of generic local
search method to speed up convergence by promoting
better exploitation.

(iii) Inclusion of domain knowledge in the search process.
(iv) Incorporation of standard genetic operators like

crossover and mutation.
(v) Repair of infeasible solutions generated during the

search process with inclusion of some domain-specific
knowledge to push towards better solutions.

(vi) Re-initialization/modification of Q-bits strings to get
the search out of local minima if the QIEA is stuck.

(vii) Better termination criteria.

Thus, although it is well known that QIEAs are competitive
for a large variety of problems, a particular QIEA has to be
designed for every problem to achieve high performance that
is competitive with respect to the state-of-the-art algorithms
for the problem. As listed above, there are many design alter-
natives available for consideration. That is the strength of the
QIEA framework. But, it also means that an implementation
that works for a given problem type has to be hand crafted
carefully. Some basic principles well understood in the con-
text of EAs may be utilized but, for most part, it is an art.

In this paper, an attempt has been made to systemati-
cally analyze the extant approaches to enhance QIEAs to
determine how effective they are on large combinatorial opti-
mization problems. An attempt is made to study the various
implementations and draw conclusions regarding their rela-
tive effectiveness. On the basis of the analysis, an extended
framework that incorporates these ideas is provided.

A carefully selected combination of features is incorpo-
rated such that some increase the diversity by increasing the
randomness and others increase the exploitation of the dis-
covered regions in search space using deterministic heuristic
techniques. This is referred to as “right-sizing the ran-
domness” in the QIEA search. The proposed framework
is developed and its performance studied using Quadratic
Knapsack Problem (QKP) as a vehicle and is dubbed as
QIEA-QKP.

QKP is NP-hard in the strong sense and has several
reported applications. This has spurred tremendous interest
in the problem and it is well-studied in the literature. On sev-
eral benchmark problems, QIEA-QKP delivers performance
which is substantially better than the canonical QIEA on both
counts, i.e., solution quality and computation time.

The rest of the paper is organized as follows. The extant
QIEAs are analyzed in Sect. 2. The QKP is described in
Sect. 3. The proposed framework QIEA-QKP is presented in
Sect. 4, along with explanation of the various features incor-
porated in it. The computational performance of QIEA-QKP
along with systematic study of effects of various features
incorporated is presented in Sect. 5. Conclusions are pre-
sented in Sect. 6.
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2 Quantum-inspired evolutionary algorithms
(QIEAs)

TheQIEAs introduced inHanandKim(2002) are population-
based stochastic evolutionary algorithms. QIEAs use a Q-bit
vector, to represent the probabilistic state of individual. Each

Q-bit is represented as qi =
[

αi

βi

]
, αi , βi are complex num-

bers so that |αi |2is the probability of state being 1 and |βi |2
is the probability of state being 0 such that |αi |2 +|βi |2 = 1.
For the purpose of QIEAs, αi and βi are assumed to be real.
Thus, a Q-bit string with n bits represents a superposition of
2n binary states and provides an extremely compact repre-
sentation of the entire search space.

The process of generating binary strings from the Q-bit
string is known as observation. To observe the Q-bit string a
string R consisting of the same number of random numbers
between 0 and 1 is generated. Each element Pi is set to 0
if Ri is less than square of Q-bit Qi and 1 otherwise. In
each iteration, several solution strings are generated from Q
by observation in this manner and their fitness values are
computed. The solution with best fitness is then identified.
The updating process moves the elements of Q towards the
best solution slightly such that there is a higher probability
of generation of solution strings, which are similar to best
solution, in subsequent iterations. A quantum-inspired gate
(Q-gate) is utilized for this purpose.

One such gate, used by the QIEAs presented in this work,
is the Rotation Gate, which updates the Q-bits as follows:

[
αt+1
i

β t+1
i

]
=

[
cos(�θi ) − sin(�θi )

sin(�θi ) cos(�θi )

] [
αt
i

β t
i

]
,

where αt+1
i and β t+1

i denote values in i th Q-bit in (t + 1)th
iteration and �θi is equivalent to the step size in typical
iterative algorithms in the sense that it defines the rate of
movement towards the currently perceived optimum.

The above description outlines the basic elements of a
QIEA. Observing a Q-bit string n times yields n different
solutions because of the probabilities involved. The fitness of
these is computed and the Q-bit string Q is updated towards
higher probability of producing strings similar to the onewith
highest fitness. This sequence of steps continues; these ideas
can be easily generalized toworkwithmultiple Q-bit strings.

QIEAs as such are applicable to a large variety of prob-
lems, but they may be too slow and computation intensive to
be of use in case of large-sized problems. Several attempts
have been made in the past to modify QIEAs in order to
solve hard problems. Table 1 lists some of the attempts made
to solve variants of KP using QIEA or modified QIEAs.
Very few attempts have been made to solve really difficult
instances of KP or its difficult variants like MoKP and QKP.
Most of the attempts are targeted to solve the simplest form

Fig. 1 Pseudo-code for SQIEA

of KP (i.e., 0/1 Knapsack Problem) instances and that too
having very small size.

The simple QIEA (SQIEA) is illustrated in Fig. 1 which
uses the following notations.

Notations:

Q(t) Q-bit population in t th iteration.
P(t) population of binary solutions in t th iter-

ation.
B(t) population of best solutions in t th itera-

tion.
qtj j th individual in Q(t).
ptj j th individual in P(t).
btj j th individual in B(t).
b best solution observed so far.
MaxIterations maximum number of iteration set as ter-

mination criterion by the user.
η1 number of times a local update of Q-bits

is performed before updating based on
global best solution found so far.

η2 number of multiple observations made on
a Q-bit individual before its local update.

n number of individuals in the population.
t the current iteration.

The steps of SQIEAare explained in brief in the following:

• Q-bits in Q(t) are initialized with 1/
√
2 and best binary

solution b with zeroes (lines 1 and 2). Before starting
iterations, individuals of Q(t) are observed into P(t) and
these solutions are repaired tomake them feasible (lines 3
and 4). B(t) is initialized by these feasible solutions (line
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Table 1 Various modifications those have been considered in QIEAs to solve variants of KP

Modifications Examples Type Maximum size n = items count, m = knapsacks count

Original QIEA (QIEA-o) Han and Kim (2002, 2003) KP n = 500

Modified initialization of Q-bit
individuals in QIEA

Han and Kim (2004) KP n = 500

Zhao et al. (2006) KP n = 500

Zhang et al. (2008) KP n = 600

Tayarani and Akbarzadeh (2008) KP n = 500

Patvardhan et al. (2014a) KP n = 290, 000

Patvardhan et al. (2014b) MKP n = 10, 000,m = 10

Modification in termination criteria Han and Kim (2004) KP n = 500

Modifications in update procedure, e.g.,
choice of attractor, different Q-gate,
other learning strategies, etc.

Han and Kim (2004) KP n = 500

Platel et al. (2007) KP n = 500

Patvardhan et al. (2007) DKP n = 10, 000

Zhang et al. (2008) KP n = 600

Li et al. (2009) MoKP n = 750,m = 4

Zhang et al. (2012) KP n = 40, 000

Qin et al. (2012) KP n = 3000

Modifying repair function based on
domain knowledge

Zhao et al. (2006) KP n = 500

Patvardhan et al. (2014a) KP n = 29, 0000

Patvardhan et al. (2014b) MoKP n = 10, 000,m = 10

Replacing local and/or global migration of
QIEA-o with other strategies

Mahdabi et al. (2008) KP n = 500

Imabeppu et al. (2008) KP n = 500

Patvardhan et al. (2014a) KP n = 290, 000

Patvardhan et al. (2014b) MoKP n = 10, 000,m = 10

Incorporation of genetic operator mutation Patvardhan et al. (2007) DKP n = 10, 000

Patvardhan et al. (2012) QKP n = 200

Patvardhan et al. (2014a) KP n = 290, 000

Patvardhan et al. (2014b) MKP n = 10, 000,m = 10

Changing size of population of Q-bit
individuals

Lu and Yu (2013) MoKP n = 750,m = 4

Re-initialization of Q-bits Mahdabi et al. (2008) KP n = 500

Patvardhan et al. (2014a) n = 290, 000

Patvardhan et al. (2014b) n = 10, 000,m = 10

Inclusion of domain knowledge in the
search process

Kim et al. (2006) MoKP n = 750,m = 2

Lu and Yu (2013) MoKP n = 750,m = 4

Patvardhan et al. (2007) DKP n = 10, 000

Patvardhan et al. (2014a) KP n = 290, 000

Patvardhan et al. (2014b) MKP n = 10, 000,m = 10

Parallel implementation Han et al. (2001) KP n = 500

Nowotniak and Kucharski (2012) KP n = 250

KP 0/1 Knapsack Problem,MKPMultiple Knapsack Problem,MoKPMulti-objective Knapsack Problem,QKPQuadratic Knapsack Problem,DKP
Difficult 0/1 Knapsack Problem

5). The SQIEA iterates MaxIterations times through the
tasks described in lines 6–21. The following tasks are
repeated η1 times first (lines 10–19):

– The Q-bits in Q(t) are collapsed and repaired η2
times to form feasible solutions in P(s) and the cor-
responding best solutions are retained in P(t) (lines
11–15).

– Individual at every position in B(t) is replaced by
corresponding individual in P(t) if found better (line
16).

– The best solution from among b and B(t) is moved
into b (line 17).

– Update (local): each individual in Q(t) is updated
based on the corresponding best solution in B(t) (line
18).
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• The individuals in Q(t) are updated (global) based on
the best solution observed so far. Each iteration is started
after updating globally (line 20).

3 The Quadratic Knapsack Problem (QKP)

The 0/1 Quadratic Knapsack Problem (QKP) is a generaliza-
tion of the 0/1 Knapsack Problem (KP) introduced by Gallo
(1980). Given n items to be filled in a knapsack where w j is
the positive integer weight of j th item, c is a positive integer
knapsack capacity and an n × n nonnegative integer matrix
P = (pi j ) is given, where p j j is a profit achieved if item j
is selected, and, for j > i , pi j + p ji is the additional profit
achieved if both items i and j are selected. QKP is to find a
subset of items whose total weight is not more than knapsack
capacity c such that the overall profit is maximized. If x j is
a binary variable which is equal to 1 if j th item is selected
and 0 otherwise, the problem is formulated as follows:

Maximize:
n∑

i=1

∑n

j=1
pi j xi x j

Subject to:
n∑
j=1

w j x j ≤ C

x j ∈ {0, 1} , j ∈ {1, . . . , n}. (1)

Sometimes matrix P is considered symmetric such that
pi j = p ji for all i and j . In such a problem, additional profit
achieved if both items i and j are selected is considered as
pi j rather than pi j + p ji , for j > i . Thus, some researchers
formulate the problem as follows:

Maximize:
n∑

i=1

∑n

j=i
pi j xi x j

Subject to:
n∑
j=1

w j x j ≤ C

x j ∈ {0, 1} , j ∈ {1, . . . , n}. (2)

TheKP is a particular case ofQKPwhich ariseswhen pi j = 0
for all i �= j . Clique problem, is also a particular case of
QKP, which calls for checking whether, for a given integer
k, a given undirected graph G = (V, E) contains a complete
subgraph on k nodes. The popular optimization version of
Clique, calledMaxClique, calls for an induced complete sub-
graph with a maximum number of nodes. The Max Clique,
can be solved using a QKP algorithm by using binary search.

Max Clique is not only NP-hard in stronger sense, but
is one of the hardest combinatorial optimization problems.
Same properties apply to QKP as well. Pseudo-polynomial
time algorithms exist for KP but none for QKP. QKP is con-

sidered much more difficult than simple KP (Caprara et al.
1999; Pisinger 2007).

Due to the generality and complexity of QKP, it is stud-
ied widely and shown to have applicability in several areas
like facility location problems , compiler design (Johnson
et al. 1993), finance, VLSI design (Ferreira et al. 1996) and
weightedmaximum b-clique problem (Dijkhuijen and Faigle
1993; Park et al. 1996).

Ever since Gallo (1980) introduced QKP and presented
method to derive the upper bound using upper planes several
attempts have been made in past to solve QKP. The existing
exact algorithms suffer from high time complexity (Pisinger
2007; Kellerer et al. 2004).

Julstorm (2005) presented a greedy Genetic Algorithm
(GGA) to solve some benchmark instances given byBillionet
and Soutif (2004) (BS benchmark instances) with upto 200
variables to optimality in 902 out of 1000 trials using around
15000 function evaluations (FEs) on an average per trial. A
Mini-Swarm algorithm is proposed by Xie and Liu (2007)
is shown to solve all BS benchmark instances with 100 and
200 binary variables to optimality with high probability in a
reasonable time. Patvardhan et al. (2012) presented known
best QIEA for QKP (dubbed QIEA-PPA in this paper). They
compared their results with Naïve EA and greedy EA by
Julstorm (2005) and showed better performance in terms of
consistency in finding the optimal solution.

4 QIEA-QKP

As stated above, SQIEA provides a broad framework with
scope for enhancements. Here, the modified algorithm
designed for QKP is presented (dubbed QIEA-QKP). The
enhancements which have been included to control the ran-
domness effectively in QIEA-QKP are as follows:

(i) Initializing Best Solution “b” with a good solution
obtained using a heuristic.

(ii) Using the sort orders of items in a problem as domain
knowledge during following operations.

a. Initializing the Q-bit individuals to depict better esti-
mations of distribution models.

b. Fortifying the repair function to improve quality of
solutions.

(iii) Improving the local best solutions using combination of
randomized and non-randomized heuristic-based local
search.

(iv) Corrective step when the algorithm appears to be stuck
in a local optimum.

(v) Re-initialization of Q-bit individuals.
(vi) Replacing the non-performing Q-bit individuals by

best.

123



1770 C. Patvardhan et al.

Fig. 2 Pseudo-code for SolveGreedy

4.1 Initializing best solution “b” with a good solution
obtained using a heuristic

The “update” procedure modifies Q-bit individuals during
evolution so that they favor generation of solutions closer
to best solutions obtained so far. Initializing the best solu-
tion with a better solution (rather than any random solution)
ensures that the better distribution models are found earlier.
The greedy solution is a fairly good solution and the QIEA-
QKP initializes the best solution with it. A greedy solution
can be formed for QKP relatively quickly using a simple
constructive heuristic. Starting with an infeasible solution
which has all the items included in the knapsack the greedy
algorithm removes items iteratively till the solution becomes
feasible. Each time an item having minimum relative profit
density is removed from solution. Let P represent a partial
solution such that i ∈ P iff i th item is included in the knap-
sack. The relative value density of an item i with respect to
P (RVDP

i ) is computed as (pii + ∑
j∈P/{i} pi j )/wi . Let GS

be a set representing the solution. The greedy heuristic used
in QIEA-QKP (dubbed SolveGreedy) is depicted in Fig. 2.

4.2 Using heuristic-based sort orders as domain
knowledge

Orderings of the elements named GreedyOrders, which pro-
vide knowledge about their priority for inclusion in the
knapsack, are computed. These are used to initialize the Q-bit
individuals (Sect. 4.2.1) and also while repairing infeasible
solutions (Sect. 4.2.2).

Starting with an empty solution, elements are added itera-
tively. During each iteration, the item havingmaximumRVD
with respect to the partial solution available before the iter-
ation is added. The process is depicted in Fig. 3. The item
having the maximum diagonal profit can be selected as the
first item with the rest being selected as stated. The Greedy-
Order so generated may not provide the optimal sequence
of items to be selected. Different choice of the first item in
step 3 leads to a different order. Thus, multiple orders are
generated by taking different items as the first item instead
of item 1.

Initializing Q-bits or repairing the solutions based on a
single GreedyOrder, makes the search explore a specific

Fig. 3 Pseudo-code for SortGreedy

Fig. 4 Initialization of Q-bits. Q-bits for items shown are sorted in
GreedyOrder from left to right

region of solution space with higher probability. Usage of
multiple GreedyOrders enables exploring different regions
simultaneously. All these regions converge towards local best
solutions produced in the particular region with subsequent
movement towards global best solution. Such an arrange-
ment promotes judicious exploration and exploitation of the
favorable regions.

4.2.1 Initializing the Q-bit Individuals to depict the better
estimations of distribution models

The Q-bit individuals are initialized based on the Greedy-
Orders as shown in Fig. 4. The items are divided in 3-parts
based on where they lie in order they being preferred: first
part contains items highly preferred for selection in knap-
sack, items in second part have medium priority and items
in third part have low priority. Hence, Q-bits for items lying
in first part (third part) are assigned values closer to 1 (0) so
that they have high (low) probability of collapsing to value
1. Q-bits for items lying in second part necessarily require
more decision making to converge to either 0 or 1. Hence
values between 0 and 1 are assigned to them. As a result,
QIEA-QKP starts exploiting the favorable area or region in
search space represented by such initialized Q-bit individu-
als. Multiple GreedyOrders are used in round-robin fashion
to help initialize all the Q-bit individuals in different manner
to target different favorable regions in search space.

4.2.2 Fortifying the repair function to improve quality of
solutions

SQIEA uses a simple “repair” function after it observes the
Q-bits through the “make” procedure to make the observed
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Fig. 5 Pseudo-code for RepairGreedy

solution feasible. In QIEA-QKP, the repair function is forti-
fied to improve the quality of solutions while making them
feasible. This improves the speed of convergence. AGreedy-
Order, as explained above, determines the relative change in
profit when an item is included or excluded from the knap-
sack. Accordingly, in each repair step, items closest to the
end of a GreedyOrder are removed and items closest to the
beginning are added as necessary. The pseudo-code is given
in Fig. 5. Array GO, provides items in the GreedyOrder
sequence.

If the same order is used each time in repairing all the
infeasible solutions, the results would be almost alike every
time. Thus, multiple orders are used in repair function in
a round-robin manner. Such a policy helps in maintaining
diversity in the solutions generated by the repair function.

4.3 Improving the local best solutions

The local best solutions are further improved using a local
“improve” function also referred in Sect. 4.1. It tries to
explore the quality of all solutions in vicinity of a local best
solution and selects the best. It iteratively executes passes
as long as gain in profit is observed. The i th element (if
not in solution) is either included or replaced by an item j
already in solution after each pass. The action of inclusion (or
replacement) is performed for that i (or pair i and j) which
results in maximum gain in overall profit of the solution.
Let P be a feasible solution, the pseudo-code of procedure
used to improve profit of P is given in Fig. 6. The function
defined in Fig. 6 is computationally expensive. Moreover, it
tries to convert worse solutions to locally best solution and
thus increases the chance of generating same solution many
times. So a lighter version, RandImproveLocal, is also imple-
mented where the forever loop in step 1 of ImproveLocal is
executed a fixed number of times instead, each time randomly
picking an element from a list of not included items in step
3. This lighter version is performed on half of the individuals
to save computation.

Fig. 6 Pseudo-code for ImproveLocal

4.4 Mutation of solutions stuck in local optimum

EAs suffer from tendency of getting stuck in local optima.
All the modifications described above help the algorithm to
exploit the search space around the greedy solutions increas-
ing the speed of convergence, but they also increase the
tendency to get stuck in local optima. To combat this prob-
lem, if a new solution generated is seen to be close to global
best solution found so far it is mutated. During mutation
2–3 bits in the solution vector are randomly selected and
changed to 0. Elements with better RPD are then iteratively
included in solution as long as the solution remains feasi-
ble. To check closeness of two solutions, Hamming distance
between them is calculated. This operator improves diver-
sity without increasing the computational effort. It helps to
explore the solution space around a current solution such
that local optimal in vicinity is not missed. This improves
the chances of finding optimal in case it is in vicinity of the
converging solution.

4.5 Re-initialization of Q-bit individuals

All the solutions generated from a Q-bit individual may still
be same after a sequence of generations even thoughmutation
is employed. It clearly indicates that the Q-bit individual has
converged and further observations made on it will not yield
any better solutions. So instead of wasting cycles on such
a Q-bit string, it is re-initialized to restore diversity. But,
reinitializing it again in same way as described in Sect. 4.1
may notmake any difference. Thus, each Q-bit in individuals
which generate same solution for more that 3 times out of 5
is set to 1/

√
2.
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4.6 Replacing the non-performing Q-bit individuals by
best individual found so far (StochasticPurge)

The Q-bit individuals are assigned a fixed lifetime to per-
form. If a Q-bit individual is found to perform worse than
average after the defined lifetime, there remains 50% chance
for it to survive. In case it ceases to exist, it is replaced by
the best performer found so far.

The complete pseudo-code for QIEA-QKP is presented in
Fig. 7. As in pseudo-code for SQIEA, Q(t) is the Q-bit pop-
ulation after t th iteration; P(t) is the population of individual
solutions; B(t) is the set of best solutions corresponding to
each individual; C is the capacity of the knapsack. Individ-
uals in Q(t), P(t) and B(t) are referred by qtj ,p

t
j and btj ,

respectively, for each j ∈ n; b refers to global best solution
and bqbit refers to Q-bit individual which generated the best
solution; be and we refer to best and worst solutions evolved
so far through out the evolution. In the following, a brief
description is given of the procedures for which pseudo-code
has not been given already.

• MultipleSortGreedy (GreedyOrders, N ) A list of differ-
ent sort orders, GreedyOrders, of length N is generated.
All sort orders are generated using the SortGreedy() pro-
cedure (Fig. 3), and multiple orders are generated by
choosing different items as first item. The first item of
the first sort order is selected as given in SortGreedy();
whereas, for remaining i sort orders, 1 < i ≤ N , the first

item is randomly chosen from the initial 30% items of
first sort order.

• InitializeGreedy (qtj ,GO) Here q
t
j is j th Q-bit individual

in a population Q(t). GO is a 2-D array containing ‘ns’
sort orders. GO[i] refers to i th sort order. The procedure
initializes the Q-bit individualqtj as explained in Sect. 4.1
using the sort order number GO[ j mod ns].

• Make P(t) from Q(t)The procedure collapses the Q-bits
in Q(t) to obtain solution in P(t).

• HamDistance (psj , b)Returns hammingdistancebetween
two binary strings psj and b.

• Mutate (psj ) Mutates the solution psj as described in
Sect. 4.4.

• Update qtj based on b
t
j Rotates the Q-bits qtj towards bits

in btj as explained earlier and defined in using rotation
angle as 0.01.

The maximum number of iterations in algorithm is con-
trolled using a global constant, MaxIterations.

5 Results and discussion

The experiments are performed on a machine with Intel�
Xeon� Processor E5645 (12M Cache, 2.40GHz, 5.86GT/s
Intel� QPI). The machine uses Red Hat Linux Enterprise 6.
The program is written in C .

Almost all the problem instances considered here have
been solved to optimality within 60 iterations, hence Max-

Fig. 7 Pseudo-code for
QIEA-QKP
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Iterations is set to 60. η1 and η2 and PurgePeriod are set
empirically to 5 and population size is set to 160. Problems
are named as n_d_i which specifies parameters size (n), den-
sity (d), seed (i) of an instance.

Two types of experiments are performed to observe the
contribution of various modifications applied. First, the
degree of degradation in performance due to removal of
each modification from proposed QIEA-QKP is observed
and studied. Second, the degree of improvement in perfor-
mance due to introduction of each modification in SQIEA
is observed and studied. Table 2 reports the performance
observed in the first set of experiments. Table 3 reports the
performance observed in the second set of experiments. The
averages of the values taken over 40BS benchmark instances
of size 100, 40 instances of size 200 and 20 instances of size
300 are reported separately in these tables.

Table 2 shows the number of times the optimal solution
is found in 30 runs, average time taken (in seconds) to reach
optimal solution (T ) and the average Function Evaluations
(FEs) taken over 30 runs to reach best solution. Table 3
shows the number of times the optimal solution is found in
30 runs, average FEs taken to reach the best solution and rel-
ative percentage distance from optimal of their average value
(RPDavg) and relative percentage distance from optimal of
their maximum value (RPDmax) obtained in 30 runs.

RPDavg =
n∑

i=1

RPDavg
i /n, (3)

where n is the number of problems and RPDavg
i is relative

percentage distance of average profit obtained in 30 runs from
optimal value known for i th instance, such that

RPDavg
i = (OPTi − AvgVali ) ∗ 100/OPTi , (4)

where OPTi and AvgVali are known optimal profit and aver-
age profit value obtained in 30 runs, respectively, for i th
problem out of n problems considered.

Similarly,

RPDmax =
n∑

i=1

RPDmax
i /n, (5)

where n is the number of problems and RPDavg
i is relative

percentage distance of average profit obtained in 30 runs from
optimal value known for i th instance, such that

RPDmax
i = (OPTi − MaxVali ) ∗ 100/OPTi , (6)

where OPTi andMaxVali are known optimal profit andmax-
imum profit value obtained in 30 runs, respectively, for i th
problem out of n problems considered.

In Table 4, for each feature proposed for improvement in
QIEA-QKP, a study is shown in the improvement observed in
SQIEA by including a feature in comparison with the degra-
dation observed in QIEA-QKP on removing the feature.

The modifications are listed in order of their increasing
effect on the performance of QIEA-QKP in Table 2. The
following points are observed:

• StochasticPurge or mutation operators have very little
effect on quality of solutions. However, they help in
attaining good solutions in lesser number of FEs by sys-
tematically eliminating Q-bit individuals which perform
poorly.

• Maximum degradation of performance is observed when
sort orders used as domainknowledge in the algorithmare
removed. The usage of sort orders in repair function and
while initializing the Q-bit individuals enhances knowl-
edge of areas containing good solutions during evolution
which is useful.

• Stochastic Purging,Mutation or Initializing the best solu-
tion using the heuristic does not have much impact on
the quality of solutions obtained but help in reducing the
effort.

• If re-initialization of Q-bit individuals is not performed,
computation effort is wasted on regions not having good
solutions and there is a considerable degradation in qual-
ity of solutions.

• Randomized Improve results in better performance only
for smaller problems (n = 100) while as size increases
non-randomized Improve leads to better performance in
terms of both the quality of solutions obtained and effort
to reach the best solution.

• Applying randomized and non-randomized together in
QIEA-QKP improves the performance more than when
any one of them is applied individually.

• It is interesting to note that though local improve is com-
putationally expensive it helps QIEA-QKP to reach the
optimal solutions in fewer iterations and thus compen-
sates for its overhead. Removing it not only reduces
the quality of solutions obtained, but also increases the
time taken to reach the best solution due to the resulting
increase in the number of FEs.

Themodifications are listed in order of their increasing effect
on the performance of SQIEA in Table 3. Following points
are observed.

• Inclusion of Mutation or StochasticPurge feature in
SQIEA does not make substantial impact on quality
of solutions or on effort required to reach best solu-
tion. However, removing any one of these features
from the QIEA-QKP shows considerable degradation in
performance. This implies that the Mutation and Sto-
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Table 2 Effect of removing proposed modifications individually from QIEA-QKP

Ranking Method Size 100 200 300

I QIEA-QKP Hits 30 29.9 29.75

T 0.02 0.56 1.65

FEs 348.00 3369.11 4351.27

II Without StochasticPurge Hits 30 29.925 29.75

T 0.04 0.75 2.05

FEs 598.31 4236.23 5174.12

II Without mutation Hits 30 29.8 29.85

T 0.03 0.77 2.09

FEs 492.79 4477.79 5153.80

III Without initializing best solution using heuristic Hits 30 29.825 29.5

T 0.06784 1.090925 3.611891

FEs 750.8775 5606.271 10,375.83

IV Without Re-initialization Hits 29.95 29.875 29.45

T 0.03 0.67 1.64

FEs 482.47 3956.65 3947.18

V Using improve without randomization Hits 29.75 30 29.75

T 0.11 0.89 2.33

FEs 2198.86 3183.94 3431.29

VI Using improve with randomization only Hits 30 29.525 29

T 0.04 1.15 5.05

FEs 632.62 8658.56 19,753.28

VII Without using improve Hits 29.775 29.1 27.1

T 0.08 0.85 3.60

FEs 3698.59 11,218.29 25,385.38

VIII Without using heuristic-based sort orders while initializing
Q-bits (assigning 1/

√
2 invariably to each Q-bit)

Hits 30 24.5 21.45

T 0.28 4.33 13.02

FEs 8168.40 34,519.55 51,893.11

IX Without using heuristic-based sort orders while initializing the
Q-bits and repairing the solutions

Hits 27.8 14.25 11.15

T 1.22 2.10 6.18

FEs 47,919.21 21,743.19 22,145.49

Hits number of runs reaching optimal solution, T time in seconds, FEs function evaluations

chasticPurge features contribute considerably only in
combination with the other proposed modifications.

• Re-initialization of Q-bit individuals if added in even
SQIEA shows a considerable improvement in the quality
of solutions evident from increased number of function
evaluations and decreased values of RPDs.

• Randomized Improve is more effective in smaller prob-
lems (n = 100) while non-randomized Improve is more
effective in larger problems.

• Applying randomized and non-randomized Improve
functions in combination provides advantages of both
and improves performance of the algorithm more than
when they are applied individually.

• Heuristic-based initialization of best solution when
included in SQIEA, significantly improves its perfor-
mance both in terms of quality of solutions and effort

required to reach best. On the other hand, removing this
feature from QIEA-QKP results in increased effort, but
no degradation in quality of solutions. This is because the
quality of solution is maintained due to other improve-
ments in QIEA-QKP. This implies that improvements
included inQIEA-QKPmake it powerful enough to reach
optimal solution even without initializing the solution
using the heuristic.

• The maximum improvement in quality of solutions is
observed when sort orders are used in repair function
and Q-bit initialization.

A broad ranking of these features based on their contri-
bution in improvement is clear from Tables 2, 3 and 4 as
follows. Using heuristic-based sort orders while initializing
the Q-bit individuals and repairing is first feature in the rank-
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Table 3 Effect of including proposed improvements individually into SQIEA

Ranking Method Size 100 200 300

VIII SQIEA Hits 0.78 0.00 0.00

RPDavg 6.67428 17.50356 24.69355

RPDmax 4.92968 15.83204 22.62981

FEs 114,026.37 148,875.05 167,109.06

VIII With mutation Hits 0.75 0.00 0.00

RPDavg 6.72784 17.45152 24.70430

RPDmax 4.75394 15.80447 22.98696

FEs 114,306.68 149,767.75 166,326.95

VIII With StochasticPurge Hits 0.78 0.00 0.00

RPDavg 6.72870 17.47712 24.66387

RPDmax 4.90731 15.86950 22.29675

FEs 114,120.12 148,618.89 167,824.01

VII With reinit Hits 2.93 0.00 0.00

RPDavg 3.96410 15.27055 22.29491

RPDmax 2.42350 13.54637 20.39589

FEs 203,692.67 211,905.53 204,502.58

VI With only randomized improve Hits 7.10 1.98 0.00

RPDavg 2.83529 12.73331 20.35497

RPDmax 1.78777 11.24463 18.11043

FEs 133,938.93 198,444.25 223,725.06

V With only non-randomized improve Hits 5.73 1.05 0.00

RPDavg 2.02922 6.71729 7.77503

RPDmax 1.22837 5.20773 6.38440

FEs 73,399.47 110,089.42 126,848.55

IV With both randomized and non-randomized improve on Q-bits
individuals

Hits 7.98 2.03 0.00

RPDavg 1.56590 6.32361 7.70248

RPDmax 0.65652 4.82354 6.12760

FEs 109,396.47 153,909.39 176,335.22

III With best solution initialized using heuristic Hits 16.68 10.50 10.50

RPDavg 0.13298 0.07279 0.08452

RPDmax 0.09258 0.06942 0.08452

FEs 3851.97 1990.81 1.00

II With sort orders used while repairing solutions (initializing Q-bits
to 1/

√
2)

Hits 28.20 19.30 13.90

RPDavg 0.00305 0.01752 0.13703

RPDmax 0.00000 0.00230 0.05232

FEs 41,578.27 89,689.40 113,272.44

I With sort orders used while repairing solutions and initializing
Q-bit individuals both

Hits 25.35 22.58 18.35

RPDavg 0.01226 0.00795 0.01398

RPDmax 0.00000 0.00170 0.00038

FEs 10,423.54 22,399.82 22,335.21

Hits number of runs reaching optimal solution, FEs function evaluations, RPDavg relative percentage distance from optimal of their average value,
RPDmax relative percentage distance from optimal of their maximum value

ing. The local improve heuristic is ranked second highest.
Next in this ranking is the re-initialization of Q-bit individ-
uals. The StochasticPurge and Mutation are next and last.

The initialization of best solution using a heuristic is more
effective when other heuristic-based modifications are not
applied, otherwise its effect reduces.
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Table 4 Contribution of each feature in improvement of QIEA-QKP over SQIEA

Sq. no. Feature Improvement in performanceon the feature adding
in SQIEA

Degradation in performance on removing the fea-
ture from QIEA-QKP

1 StochasticPurge Little improvement in quality or effort Very little effect on quality of solutions but
considerable increase in number of FEs is
observed

2 Mutation Little improvement in quality or effort Very little effect on quality of solutions but
considerable increase in number of FEs is
observed

3 Re-initialization (Reinit) Considerable improvement in quality but number
of FEs increases

Considerable degradation in quality of solutions
is observed but little change in number of FEs

4 Initialization of best
solution

Good improvement in quality of solutions with a
tremendously decreased number of FEs

Very little effect on quality of solutions but
considerable increase in number of FEs is
observed

5 Local Improve Considerable improvement in quality of solutions
but little increase in FEs

Significant increase in FEs. Considerable
degradation in quality

6 Randomized method of
Improve

Considerable improvement in quality of solutions
but marginal increase in FEs

Significant increase in FEs for small size (100)
problems. Quality degraded for smaller
problems but improved marginally for medium
size problem

7 Non-randomized
method of improve

Considerable improvement in quality of solutions
but significant increase in Fes is not observed

Significant increase in FEs. Significant
degradation in quality is not observed

8 Sort orders in
initialization or repair

Significant improvement in quality of solutions,
with considerable reduction in FEs is observed
when sort orders are used in repair

Significant degradation in quality and effort on
removing the use of sort orders in initialization

9 Sort orders in both
repair and initialize

Maximum improvement in quality of solutions
but considerable increase in FEs is observed

Maximum degradation in quality and effort

Amore detailed analysis of the features and their contribu-
tion to the search process is given below with the discussion
ordering the features in increasing order of determinism.

The features like Mutation, Stochastic Purge and Re-
initialization increase the randomness. The latter two are
applied on a need basis. Their removal from QIEA-QKP
often results in an increased number of FEs for obtaining
similar quality of solutions. This is because it may take time
for the search to cover disparate regions of the search space
possibly including the one with the best result found. Their
incorporation in SQIEA does not show significant effect as
it further increases the randomness of an already random
search. These are effective only when they work in tandem
with other deterministic techniques which favor exploitation
of specific good regions or solutions.

Use of sort orders while initializing the Q-bits and/or
repairing the observed solutions is most effective. This fea-
ture controls the randomness by biasing the mechanism of
producing new solutions such that it produces solutions in
specific good regions. However, it does not constrain the
algorithm to restrict the search to a particular region in search
space or towards a particular solution as it would only result
in a local minimum. The addition of this feature in SQIEA
improves the quality of solutions obtained and reduces time
to obtain the best solution reduces dramatically. Conversely,

removing it fromQIEA-QKP the quality of solutions reduces
and time to reach best solution increases significantly.

The improve function improves the solutions obtained by
collapsing Q-bits and repairing the result. The improvement
is typically a local search descent method using pairwise
exchanges for all pairs. Random improve considers a subset
of randomly selected pairs instead of all pairs. The other
features help finding better regions and the improve functions
perform hill-climbing for better solutions. Typically EAs are
good at finding better regions of search space, but find it
hard to pin point the optimal solutions. Therefore, this local
search is a critical step. If it is removed, the number of FEs
for reaching the best solutions is increased a lot.

The initialization of solution using a heuristic provides
good initial points and regions for the search to start. With-
out this feature, the promising regions have to be found out by
the QIEA itself. Since QIEA-QKP having balanced explo-
ration and exploitation is good at this aspect even without
this feature, this feature can be removed without causing
muchdamage to the searchprocess.Results are obtainedmar-
ginally faster in QIEA-QKP if it is incorporated. However,
in SQIEA this feature provides tremendous improvement.

On the basis of above discussion, an effective population-
based search technique with right amount of randomness is
developed, i.e., QIEA-QKP.
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Fig. 8 Comparing convergence of SQIEA and QIEA-QKP with population sizes 1, 50, 100 and 150 for some selected problems. A plot is not
extended further if it reaches optimal
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Table 5 Comparison of SQIEA with proposed QIEA-QKP for BS benchmark instances of size 100

Problem SQIEA QIEA-QKP

Quality of value Effort Quality of value Effort

Hits Best Avg Stddev AvgT AvgFEs Hits Best Avg Stddev AvgT AvgFEs

100_25_1 0 17,177 16,219.2 289.36 1.87 121,252.20 30 18,558 18,558 0.00 0.12 1957.43

100_25_2 0 55,810 55,265.87 290.83 1.48 99,874.00 30 56,525 56,525 0.00 0.00 1.00

100_25_3 0 2755 2526.8 111.17 1.58 106,260.60 30 3752 3752 0.00 0.02 89.30

100_25_4 0 48,852 48,192.1 185.69 1.76 117,368.00 30 50,382 50,382 0.00 0.19 7351.80

100_25_5 0 61,205 61,152.63 45.06 1.03 69,516.20 30 61,494 61,494 0.00 0.00 1.00

100_25_6 0 35,898 35,638.33 115.59 1.85 120,767.60 30 36,360 36,360 0.00 0.00 1.00

100_25_7 0 12,895 12,498.57 231.90 2.00 130,831.20 30 14,657 14,657 0.00 0.05 185.17

100_25_8 0 19,809 19,394.27 180.00 1.93 125,581.60 30 20,452 20,452 0.00 0.10 1166.77

100_25_9 0 34,587 34,047.1 210.30 2.00 130,260.40 30 35,438 35,438 0.00 0.02 131.33

100_25_10 0 24,174 23,861.8 148.93 2.10 135,396.80 30 24,930 24,930 0.00 0.00 1.00

100_50_1 0 82,700 82,474.63 116.21 1.85 121,703.00 30 83,742 83,742 0.00 0.02 79.10

100_50_2 0 103,954 103,285.1 255.36 1.58 105,747.40 30 104,856 104,856 0.00 0.02 89.20

100_50_3 0 32,217 31,108.83 434.32 2.23 144,755.60 30 34,006 34,006 0.00 0.10 1228.47

100_50_4 0 103,927 103,670.1 178.12 1.57 105,636.00 30 105,996 105,996 0.00 0.00 1.00

100_50_5 0 55,443 54,950.57 272.24 2.13 137,420.00 30 56,464 56,464 0.00 0.00 1.00

100_50_6 0 13,525 12,642.23 367.92 1.89 124,763.40 30 16,083 16,083 0.00 0.00 1.00

100_50_7 0 51,502 50,779.43 255.75 2.15 138,126.40 30 52,819 52,819 0.00 0.00 1.00

100_50_8 0 53,604 53,086.83 384.66 2.08 133,405.80 30 54,246 54,246 0.00 0.03 115.33

100_50_9 0 67,549 67,239 198.70 2.04 132,976.40 30 68,974 68,974 0.00 0.00 1.00

100_50_10 0 87,349 86,440 404.79 1.86 123,356.80 30 88,634 88,634 0.00 0.02 91.10

100_75_1 30 189,137 189,137 0.00 0.01 710.00 30 189,137 189,137 0.00 0.00 1.00

100_75_2 0 94,410 93,482.27 547.71 2.14 138,439.00 30 95,074 95,074 0.00 0.00 1.00

100_75_3 0 59,407 57,408.8 698.92 2.22 143,410.80 30 62,098 62,098 0.00 0.00 1.00

100_75_4 0 71,605 70,252.13 708.58 2.11 135,650.60 30 72,245 72,245 0.00 0.03 95.60

100_75_5 0 22,630 21,887.27 441.50 1.96 129,020.40 30 27,616 27,616 0.00 0.09 892.30

100_75_6 0 142,424 142,178.2 84.80 1.47 98,133.60 30 145,273 145,273 0.00 0.00 1.00

100_75_7 0 109,488 109,106.4 237.11 1.92 125,753.80 30 110,979 110,979 0.00 0.02 84.07

100_75_8 0 16,350 15,409.7 417.83 1.88 124,391.60 30 19,570 19,570 0.00 0.00 1.00

100_75_9 0 101,823 101,476.7 160.25 1.89 123,310.00 30 104,341 104,341 0.00 0.02 109.67

100_75_10 0 141,687 141,173.4 313.04 1.42 94,473.00 30 143,740 143,740 0.00 0.01 42.27

100_100_1 0 79,185 77,636 932.96 2.10 135,856.00 30 81,978 81,978 0.00 0.00 1.00

100_100_2 0 189,352 18,7606 834.13 1.49 98,986.80 30 190,424 190,424 0.00 0.02 106.60

100_100_3 0 225,379 225,268.9 78.89 0.77 50,892.80 30 225,434 225,434 0.00 0.00 1.00

100_100_4 0 56,046 54,397.23 1008.50 1.86 122,028.80 30 63,028 63,028 0.00 0.00 1.00

100_100_5 0 229,677 229,258 114.04 0.96 64,352.00 30 230,076 230,076 0.00 0.00 1.00

100_100_6 0 71,359 68,970.43 960.84 2.24 144,770.60 30 74,358 74,358 0.00 0.00 1.00

100_100_7 0 7268 6624.3 316.57 1.51 101410.40 30 10,330 10330 0.00 0.00 1.00

100_100_8 0 59,520 57,501.13 1069.31 2.18 141,752.20 30 62,582 62,582 0.00 0.00 1.00

100_100_9 1 232,754 232,476.9 56.61 0.93 62,154.00 30 232,754 232,754 0.00 0.00 1.00

100_100_10 0 191,479 191,111.1 165.34 1.51 100,559.00 30 193,262 193,262 0.00 0.02 82.53

Avg 0.775 345.60 1.74 114,026.37 30 0.00 0.02 348.00

The best observed values for each parameter has been indicated in bold
Hits number of runs reaching optimal solution, Avg average profit, Stddev standard deviation in profit, AvgT average time in seconds, AvgFEs
average number of FEs

123



Towards the right amount of randomness in quantum-inspired. . . 1779

Table 6 Comparison of SQIEA with proposed QIEA-QKP for BS benchmark instances of size 200.

Problem SQIEA QIEA-QKP

Quality of solutions Effort Quality of solutions Effort

Hits Best Avg Stddev AvgT AvgFEs Hits Best Avg Stddev AvgT AvgFEs

200_25_1 0 19,5258 193,582.1 672.11 6.79 136,484.00 30 204,441 204,441 0.00 0.00 1.00

200_25_2 0 236,842 236,193.9 228.12 5.06 103,102.20 30 239,573 239,573 0.00 0.10 27.17

200_25_3 0 245,076 244,577.8 166.20 3.64 74,715.40 30 245,463 245,463 0.00 0.10 74.90

200_25_4 0 217,158 216,252.8 251.22 5.64 115,373.00 30 222,361 222,361 0.00 0.10 32.10

200_25_5 0 180,093 178,825.8 536.09 6.75 144,680.60 30 187,324 187,324 0.00 0.00 1.00

200_25_6 0 66,268 64,637.8 734.26 8.13 171,737.60 26 80,351 80,348.87 5.53 2.34 15699.81

200_25_7 0 40,232 38,877.97 685.61 7.16 152,794.40 30 59,036 59,036 0.00 0.83 1420.80

200_25_8 0 141,217 139,434.8 814.02 8.52 180,769.40 30 149,433 149,433 0.00 0.40 2182.60

200_25_9 0 32,964 30,801.47 957.69 7.60 162,751.40 30 49,366 49,366 0.00 0.01 1.00

200_25_10 0 29,842 28,925.53 446.89 7.13 152,554.80 30 48,459 48,459 0.00 0.01 1.00

200_50_1 0 355,644 351,716.5 1416.23 7.05 149,537.80 30 372,097 372,097 0.00 0.00 1.00

200_50_2 0 194,062 191,088 1290.43 8.13 170,658.60 30 211,130 211,130 0.00 2.49 19,513.27

200_50_3 0 205,423 201,801.5 1647.44 8.55 179,772.00 30 227,185 227,185 0.00 0.30 187.87

200_50_4 0 208,969 205,833.3 1742.84 8.54 179,219.80 30 228,572 228,572 0.00 0.01 1.00

200_50_5 0 477,845 477,535.8 162.13 3.67 79,201.20 30 479,651 479,651 0.00 0.00 1.00

200_50_6 0 420,304 419,734.2 334.71 5.65 122,390.00 30 426,777 426,777 0.00 0.11 86.97

200_50_7 0 208,323 204,642.7 1414.43 8.46 176,806.80 30 220,890 220,890 0.00 0.92 5275.43

200_50_8 0 302,123 299,882.1 1147.11 8.12 169,333.00 30 317,952 317,952 0.00 0.30 810.43

200_50_9 0 76,337 74,055.43 1151.30 7.48 157,455.00 30 104,936 104,936 0.00 2.19 12,681.27

200_50_10 0 271,854 268,834.3 1483.16 7.82 162,835.60 30 284,751 284,751 0.00 0.30 596.50

200_75_1 0 421,113 416,091.5 1683.47 7.72 162,802.20 30 442,894 442,894 0.00 2.09 20,518.40

200_75_2 0 251,155 246,865.2 2188.81 8.73 180,871.00 30 286,643 286,643 0.00 5.54 46,580.30

200_75_3 0 27,918 25,453.07 931.90 6.60 138,581.00 30 61,924 61,924 0.00 0.40 526.17

200_75_4 0 74,617 72,434.97 1035.95 7.80 162,284.60 30 128,351 128,351 0.00 0.01 1.00

200_75_5 0 80,841 78,021.17 1620.23 6.94 147,109.80 30 137,885 137,885 0.00 0.01 1.00

200_75_6 0 183,975 179,061.8 2229.60 8.17 171,629.00 30 229,631 229,631 0.00 0.87 1544.67

200_75_7 0 217,881 210,524.4 2980.01 8.24 173,108.20 30 269,887 269,887 0.00 0.66 1153.97

200_75_8 0 588,567 586,445.8 1808.62 6.54 138,146.20 30 600,858 600,858 0.00 0.00 1.00

200_75_9 0 495,443 493,553.5 1245.91 7.20 152,808.60 30 516,771 516,771 0.00 0.13 93.93

200_75_10 0 94,451 89,752.5 1683.20 7.29 155,314.20 30 142,694 142,694 0.00 0.01 1.00

200_100_1 0 936,095 935,171.7 426.01 4.11 89,178.00 30 937,149 937,149 0.00 0.11 84.90

200_100_2 0 232,202 221,884.4 3463.59 7.86 166,320.20 30 303,058 303,058 0.00 0.84 1006.97

200_100_3 0 15,337 13,602.3 609.60 5.77 124,916.40 30 29,367 29,367 0.00 0.14 89.77

200_100_4 0 47,694 45,347.73 1100.51 6.63 142,526.60 30 100,838 100,838 0.00 0.01 1.00

200_100_5 0 767,658 764,253.7 3247.37 6.44 137,820.40 30 786,635 786,635 0.00 0.12 88.40

200_100_6 0 27,152 24,487.3 922.73 6.05 129,999.40 30 41,171 41,171 0.00 0.01 1.00

200_100_7 0 673,896 671,673.8 2566.76 7.37 156,884.20 30 701,094 701,094 0.00 0.12 84.23

200_100_8 0 759,626 753,016.3 1959.81 7.04 151,425.00 30 782,443 782,443 0.00 0.47 4300.07

200_100_9 0 598,531 594,475.8 2826.73 7.29 154,267.80 30 628,992 628,992 0.00 0.13 89.63

200_100_10 0 328,817 322,073.3 3641.52 8.44 176,836.60 30 378,442 378,442 0.00 0.01 1.00

Avg 0 1386.36 7.05 148,875.05 29.9 0.14 0.56 3369.11

The best observed values for each parameter has been indicated in bold
Hits number of runs reaching optimal solution, Avg average profit, Stddev standard deviation in profit, AvgT average time in seconds, AvgFEs
average number of FEs
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Table 7 Comparison of SQIEA with proposed QIEA-QKP for BS benchmark instances of size 300

Problem SQIEA QIEA-QKP

Quality of solution Effort Quality of solution Effort

Hits Best Avg Stddev AvgT AvgFEs Hits Best Avg Stddev AvgT AvgFEs

300_25_1 0 9793 8652.667 422.25 13.68 134,758.60 30 29,140 29,140 0.00 0.05 1.00

300_25_2 0 249,595 245,634.7 1630.10 20.12 192,098.60 29 281,990 281,989.4 3.10 3.36 9347.45

300_25_3 0 185,605 181,958.5 1586.75 21.07 196,778.80 30 231,075 231,075 0.00 0.03 1.00

300_25_4 0 428,258 425,099.4 1003.31 16.65 160,597.20 30 444,759 444,759 0.00 0.98 2886.63

300_25_5 0 6855 5743.167 268.51 12.97 124,436.80 30 14,988 14,988 0.00 3.38 151,11.43

300_25_6 0 230,876 226,724.6 2181.99 20.91 200,165.20 30 269,782 269,782 0.00 1.72 2058.60

300_25_7 0 471,931 470,657.1 609.53 15.63 153,466.40 30 485,263 485,263 0.00 0.51 252.43

300_25_8 0 3387 2999.1 137.73 11.21 110,695.00 30 9343 9343 0.00 1.06 2349.20

300_25_9 0 214,708 207,187.3 2399.78 20.48 197,481.20 26 250,761 250,759.7 3.46 11.63 42,638.73

300_25_10 0 360,844 356,019.2 1492.99 17.90 173,352.80 30 383,377 383,377 0.00 0.01 1.00

300_50_1 0 448,176 442,527.3 3107.13 20.06 193,855.40 30 513,379 513,379 0.00 1.92 2319.40

300_50_2 0 48,000 45,135.63 1092.04 15.12 148,840.40 30 105,543 105,543 0.00 0.05 1.00

300_50_3 0 839,404 834,913.8 1832.46 17.24 168,376.40 30 875,788 875,788 0.00 0.53 224.63

300_50_4 0 196,597 188,723.9 2560.05 18.53 178,334.00 30 307,124 307,124 0.00 4.90 6533.60

300_50_5 0 663,770 658,652.2 2883.20 19.46 188,890.80 30 727,820 727,820 0.00 0.96 1390.97

300_50_6 0 685,417 681,156.8 2263.49 18.75 183,437.00 30 734,053 734,053 0.00 0.01 1.00

300_50_7 0 17,934 15,420 850.46 13.51 132,586.00 30 43,595 43,595 0.00 1.23 1758.07

300_50_8 0 726,558 719,336.4 2761.22 18.49 179,859.20 30 767,977 767,977 0.00 0.59 147.17

300_50_9 0 709,592 703,244.5 3279.21 18.91 183,854.80 30 761,351 761,351 0.00 0.01 1.00

300_50_10 0 975,666 972,426.6 2186.64 14.31 140,316.60 30 996,070 996,070 0.00 0.01 1.00

Avg 0 1727.44 17.25 167,109.06 29.75 0.33 1.65 4351.27

The best observed values for each parameter has been indicated in bold
Hits number of runs reaching optimal solution, Avg average profit, Stddev standard deviation in profit, AvgT average time in seconds, AvgFEs
average number of FEs

The trend of convergence in SQIEA and QIEA-QKP is
studied with different population sizes, viz. 1, 50, 100 and
150 through 50 generations by plotting the best profit val-
ues obtained after each generation. The plots (drawn till
they reach the optimal first time) are shown for selected
problems 200_50_9 and 200_75_1 in Fig. 8(1a, b) and
(2a, b), respectively. The optimal value is shown using a
gray dotted line. It is quite clear that QIEA-QKP con-
verges to near optimal value which is far better than
value SQIEA converges to. Moreover, QIEA-QKP obtains
it in substantially less number of FEs. The increment
in population size further improves the performance of
algorithm on both aspects, i.e., improved quality in less
number of generations. Population size of 150 is suffi-
cient for these problems. Tables 5, 6 and 7 present the
detailed comparison of SQIEA with proposed QIEA-QKP
on all the 100 BS benchmark instances. Following results
have been shown in these tables, number of runs reaching
optimal solution (Hits), best, average (AVG) and stan-
dard deviation in values obtained (Stddev), average time
in seconds (AvgT) and average number of FEs (AvgFEs).

It is clear that QIEA-QKP is markedly better than the
SQIEA.

Table 5 shows that QIEA-QKP returns optimal solution
for all problems of size 100 variables in 30 runs taking 0.02 s
on an average and requiring around 348 FEs per trial on an
average for all 40 instances.

Table6 shows that QIEA-QKP provides optimal solution
for problems of size 200 variables in 99.67% 30 runs in less
than 0.6 s requiring around 3369 FEs per trial on an average
for all 40 instances.

Table 7 shows that QIEA-QKP provides optimal solution
for problems of size 300 variables in 99.17% of 30 runs in
less than 1.7 s requiring around 4351 FEs per trial on an
average for all 20 instances.

Table8 shows the comparison of proposed QIEA-QKP
with known best QIEA for QKP, i.e., QIEA-PPA on 20 BS
benchmark instances. Since QIEA-PPA performs better only
in terms of quality of solutions while it requires more FEs as
compared to GGA, results of GGA are also included while
comparing QIEA-QKP with QIEA-PPA. Table8 presents
number of times optimal solution is reached in 50 runs and
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Table 8 Comparison of QIEA-QKP with GGA and QIEA-PPA

Problem Opt Julstroms greedy EA QIEA-PPA QIEA-QKP

Hits BestFEs AvgFEs Hits BestFEs AvgFEs Hits BestFEs AvgFEs

100_25_1 18,558 50 375 2269 50 4250 182,716 50 20 3177.94

100_25_2 56,525 50 75 187 50 50 50 50 1 1

100_25_3 3752 36 625 9203 46 4850 289,376 50 82 90.62

100_25_4 50,382 23 175 4849 50 50 50 50 5 5860.12

100_25_5 61,494 50 25 54 50 50 50 50 1 1

100_25_6 36,360 50 375 1330 50 50 50 50 1 1

100_25_7 14,657 50 275 486 50 50 33,228 50 22 194.88

100_25_8 20,452 50 275 411 50 50 50 50 81 1095.44

100_25_9 35,438 37 225 11,777.5 50 150 25,434 50 35 118.26

100_25_10 24,930 50 325 582 38 6050 192,471 50 1 1

200_100_1 937,149 50 1550 46,990 50 1100 54,816 50 82 84.88

200_100_2 303,058 50 2950 10,362 49 1500 207,634 50 148 1010.22

200_100_3 29,367 50 1250 1940 50 3700 153,232 50 25 97.74

200_100_4 100,838 50 1250 2082 50 100 100 50 1 1

200_100_5 786,635 50 1650 4928 41 1900 267,374 50 82 89.18

200_100_6 41,171 50 1150 1392 50 100 100 50 1 1

200_100_7 701,094 50 1850 19,666 40 700 90,540 50 82 84.24

200_100_8 782,443 6 107,950 157,100 41 5100 567,602 49 82 5613.1224

200_100_9 628,992 50 1550 5716 42 2500 523,990 50 82 91.08

200_100_10 378,442 50 3950 17,932 47 7700 221,086 50 1 1

Sum 902 944 999

The best observed values for each parameter has been indicated in bold
Opt optimal value of Profit, Hits number of runs reaching optimal solution, BestFEs average number of FEs, AvgFEs average number of FEs

minimum (BestFEs) and average (AvgFEs) function evalua-
tions requiredwithin 50 runs to solve each of the 20 instances.
GGA provides optimal solution 902 times, QIEA-PPA pro-
vides optimal solution 944 times and outperforming both
QIEA-QKP provides optimal solution 999 times out of 1000
(50 runs for each of 20 instances). GGA requires 14,962.83
FEs on an average, QIEA-PPA requires 140,497.5 FEs on an
average and again outperforming both QIEA-QKP requires
only 880.73FEs on an average over total 1000 trials. It is clear
that QIEA-QKP outperforms both QIEA-PPA and GGA in
terms of frequency of reaching optimal and computational
effort required.

Table9 shows the comparison of proposed QIEA-QKP
with the a popular population-based Mini-Swarm algorithm
given by Xie and Liu (2007) using BS benchmark instances
of size 100 and 200 variables. Table9 presents number of
times optimal solution is reached in 100 runs (Hits), average
value over 100 runs of relative percentage deviation (RPD)
from the optimal and average time taken (AvgT) in seconds
required to reach best solution. Mini-Swarm algorithm pro-
vides optimal solution 96 times on average out of 100 runs for
problems of size 100 and 93 times for size 200. On the other

hand QIEA-QKP provides 100 times for problems of size
100 and 99.825 times on an average out of 100 runs for prob-
lems of size 200. QIEA-QKP takes considerably less time
than Mini-Swarm algorithm for the purpose. So QIEA-QKP
clearly outperforms the Mini-Swarm algorithm.

6 Conclusions

This work presents a QIEA which is enhanced using sev-
eral features to improve its capability to exploit and explore
the solution space. The detailed comparison and analysis
of effects of all the features applied is presented. Various
versions of QIEA-QKP having different combinations of
features are used for analysis. A ranking is done using a
systematic method based on the performance of various ver-
sions of QIEA-QKP. The analysis is further used to rank the
modifications based on their individual contribution to the
improvements in QIEA-QKP.

QKP is a difficult NP-hard optimization problem as no
pseudo-polynomial time algorithm exists to solve it. The pro-
posed QIEA-QKP is shown to provide optimal solutions in
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Table 9 Comparison of QIEA-QKP with Mini-Swarm algorithm

Problem Mini-swarm QIEA-QKP Problem Mini-Swarm QIEA-QKP

Hits RPD AvgT Hits RPD AvgT Hits RPD AvgT Hits RPD AvgT

100_25_1 100 0 0.430 100 0 0.180 200_25_1 100 0 1.221 100 0 0.003

100_25_2 100 0 0.170 100 0 0.001 200_25_2 100 0 0.499 100 0 0.095

100_25_3 100 0 0.190 100 0 0.020 200_25_3 98 7E-04 0.536 100 0 0.105

100_25_4 100 0 0.920 100 0 0.130 200_25_4 100 0 0.726 100 0 0.098

100_25_5 100 0 0.064 100 0 0.001 200_25_5 100 0 1.571 100 0 0.003

100_25_6 100 0 0.415 100 0 0.001 200_25_6 28 0.054 2.781 93 0.001 2.680

100_25_7 100 0 0.233 100 0 0.051 200_25_7 77 0.036 2.583 100 0 0.834

100_25_8 100 0 0.313 100 0 0.096 200_25_8 100 0 2.038 100 0 0.417

100_25_9 39 0.117 0.801 100 0 0.021 200_25_9 100 0 1.405 100 0 0.012

100_25_10 100 0 0.890 100 0 0.002 200_25_10 100 0 0.940 100 0 0.013

100_50_1 100 0 0.273 100 0 0.017 200_50_1 100 0 1.292 100 0 0.003

100_50_2 54 0.028 0.224 100 0 0.017 200_50_2 26 0.005 1.825 100 0 2.384

100_50_3 88 0.008 0.366 100 0 0.114 200_50_3 100 0 1.606 100 0 0.284

100_50_4 100 0 0.137 100 0 0.001 200_50_4 100 0 4.801 100 0 0.007

100_50_5 100 0 0.669 100 0 0.001 200_50_5 100 0 0.501 100 0 0.001

100_50_6 100 0 0.263 100 0 0.002 200_50_6 100 0 1.053 100 0 0.113

100_50_7 100 0 0.417 100 0 0.001 200_50_7 100 0 2.066 100 0 0.903

100_50_8 100 0 0.416 100 0 0.032 200_50_8 100 0 1.726 100 0 0.290

100_50_9 100 0 0.950 100 0 0.001 200_50_9 100 0 1.097 100 0 2.376

100_50_10 100 0 0.340 100 0 0.019 200_50_10 98 4E-05 2.079 100 0 0.294

100_75_1 100 0 0.090 100 0 0.001 200_75_1 16 0.025 3.339 100 0 2.286

100_75_2 75 0.014 0.749 100 0 0.001 200_75_2 95 5E-05 2.797 100 0 5.705

100_75_3 100 0 0.349 100 0 0.002 200_75_3 100 0 0.656 100 0 0.415

100_75_4 100 0 0.522 100 0 0.025 200_75_4 100 0 1.232 100 0 0.012

100_75_5 100 0 0.210 100 0 0.087 200_75_5 100 0 1.127 100 0 0.013

100_75_6 100 0 0.555 100 0 0.001 200_75_6 100 0 1.661 100 0 0.872

100_75_7 100 0 0.341 100 0 0.019 200_75_7 100 0 6.291 100 0 0.644

100_75_8 100 0 0.192 100 0 0.002 200_75_8 98 2E-04 1.966 100 0 0.002

100_75_9 100 0 0.417 100 0 0.026 200_75_9 100 0 1.515 100 0 0.131

100_75_10 100 0 0.209 100 0 0.014 200_75_10 100 0 1.072 100 0 0.013

100_100_1 100 0 0.271 100 0 0.002 200_100_1 100 0 0.574 100 0 0.111

100_100_2 100 0 0.230 100 0 0.019 200_100_2 100 0 1.179 100 0 0.850

100_100_3 100 0 0.190 100 0 0.001 200_100_3 100 0 0.301 100 0 0.148

100_100_4 100 0 0.400 100 0 0.002 200_100_4 100 0 0.543 100 0 0.014

100_100_5 100 0 0.106 100 0 0.001 200_100_5 100 0 2.043 100 0 0.121

100_100_6 100 0 0.330 100 0 0.002 200_100_6 100 0 0.311 100 0 0.014

100_100_7 100 0 0.120 100 0 0.002 200_100_7 100 0 1.732 100 0 0.119

100_100_8 100 0 0.257 100 0 0.002 200_100_8 100 0 1.258 100 0 0.677

100_100_9 100 0 0.109 100 0 0.001 200_100_9 100 0 2.277 100 0 0.135

100_100_10 100 0 0.240 100 0 0.015 200_100_10 100 0 1.757 100 0 0.009

Average 96 0.004 0.359 100 0 0.023 93 0.003 1.649 99.825 3E-05 0.58

The best observed values for each parameter has been indicated in bold

more than 99.5% runs for benchmark instances of size up to
300 variables within around 1 s per trial per instance on an
average.

A comparison of QIEA-QKP with existing SQIEA shows
that proposed QIEA-QKP is substantially better both in
terms of quality of solutions obtained and computational
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effort required forQKP. Comparisons show that the proposed
QIEA-QKP outperforms some existing population-based
algorithms like a Genetic Algorithm, an existing QIEA and
a popular Mini-Swarm algorithm.

This research achieves amodifiedQIEA frameworkwhere
known effective heuristics for QKP and well-known oper-
ators of EAs like mutation, re-initialization and purging
are used in combination to improve the random search.
The effectiveness of this approach is evident from its
significantly improved performance on well-known bench-
mark instances. A systematic way of studying the impor-
tance of each modification as well as ranking them is
presented which can be used to apply them appropri-
ately.

The proposed QIEA-QKP is a population-based search,
in which several features are incorporated. Some of these
features increase the randomness in the search process
for better exploration and the others compensate by local
search for better exploitation together enabling a judicious
combination tailored for particular problem being solved,
hence referred as “right-sizing the randomness” in the QIEA
search.

The improved QIEA framework presented can be used for
other similar NP-hard problems too.
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